A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell (including thin-film, crystalline silicon, amorphous silicon, and other types of cells) that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material. A direct plasmonic solar cell is a solar cell that converts light into electricity using plasmons as the active, photovoltaic material. The thickness varies from that of traditional silicon PV, to less than 2 μm thick and theoretically could be as thin as 100 nm. They can use substrates which are cheaper than silicon, such as glass, plastic or steel. One of the challenges for thin film solar cells is that they do not absorb as much light as thicker solar cells made with materials with the same absorption coefficient. Methods for light trapping are important for thin film solar cells. Plasmonic-enhanced cells improve absorption by scattering light using metal nano-particles excited at their surface plasmon resonance, but more importantly due to involved quantum effects. Interestingly, plasmonic core-shell nanoparticles located in the front of the thin film solar cells can aid weak absorption of Si solar cells in the near-infrared region—the fraction of light scattered into the substrate and the maximum optical path length enhancement can be as high as 0.999 and 3133. Incoming light at the plasmon resonance frequency induces electron oscillations at the surface of the nanoparticles. The oscillation electrons can then be captured by a conductive layer producing an electrical current. The voltage produced is dependent on the bandgap of the conductive layer and the potential of the electrolyte in contact with the nanoparticles.