A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the absorbing photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are tunable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum. As of 2019, efficiency exceeds 16.5%. The Shockley-Queisser limit, which sets the maximum efficiency of a single-layer photovoltaic cell to be 33.7%, assumes that only one electron-hole pair (exciton) can be generated per incoming photon. Multiple exciton generation (MEG) is an exciton relaxation pathway which allows two or more excitons to be generated per incoming high energy photon. In traditional photovoltaics, this excess energy is lost to the bulk material as lattice vibrations (electron-phonon coupling). MEG occurs when this excess energy is transferred to excite additional electrons across the band gap, where they can contribute to the short-circuit current density. Within quantum dots, quantum confinement increases coulombic interactions which drives the MEG process. This phenomenon also decreases the rate of electron-phonon coupling, which is the dominant method of exciton relaxation in bulk semiconductors. The phonon bottleneck slows the rate of hot carrier cooling, which allows excitons to pursue other pathways of relaxation; this allows MEG to dominate in quantum dot solar cells. The rate of MEG can be optimized by tailoring quantum dot ligand chemistry, as well as by changing the quantum dot material and geometry. In 2004, Los Alamos National Laboratory reported spectroscopic evidence that several excitons could be efficiently generated upon absorption of a single, energetic photon in a quantum dot. Capturing them would catch more of the energy in sunlight. In this approach, known as “carrier multiplication” (CM) or “multiple exciton generation” (MEG), the quantum dot is tuned to release multiple electron-hole pairs at a lower energy instead of one pair at high energy. This increases efficiency through increased photocurrent. LANL’s dots were made from lead selenide. In 2010, the University of Wyoming demonstrated similar performance using DCCS cells. Lead-sulfur (PbS) dots demonstrated two-electron ejection when the incoming photons had about three times the bandgap energy. In 2005, NREL demonstrated MEG in quantum dots, producing three electrons per photon and a theoretical efficiency of 65%. In 2007, they achieved a similar result in silicon. Although quantum dot solar cells have yet to be commercially viable on the mass scale, several small commercial providers have begun marketing quantum dot photovoltaic products. Investors and financial analysts have identified quantum dot photovoltaics as a key future technology for the solar industry. Many heavy-metal quantum dot (lead/cadmium chalcogenides such as PbSe, CdSe) semiconductors can be cytotoxic and must be encapsulated in a stable polymer shell to prevent exposure. Non-toxic quantum dot materials such as AgBiS2 nanocrystals have been explored due to their safety and abundance; exploration with solar cells based with these materials have demonstrated comparable conversion efficiencies and short-circuit current densities. UbiQD’s CuInSe2-X quantum dot material is another example of a non-toxic semiconductor compound.